
Rate Limiting in Linux

Version 1
06/30/2006

M. Bowden, M. Crawford
CD/CCF/Wide Area Systems

Why Rate Limit?

When a sender can transmit data faster than the network or receiver allows, packets are
dropped. With the standard TCP control algorithm, this packet loss is guaranteed to occur and
produces a sawtooth effect where the rate increases gradually until it exceeds the network
capacity, drops by half, and increases again. On high bandwidth, high latency paths the
recovery time for each cycle can be significant, leading to much lower average rates.

Splitting a single high bandwidth stream into a number of slower streams reduces this effect
(mainly by adding several lower amplitude, out-of-phase sawtooth responses). Depending on
the resonance however, some streams may take much longer to finish.

If the available network and receiver bandwidth is known to some extent, the stream (or
streams) can be rate limited. Packet loss is avoided and there is no sawtooth effect. Of course,
this is only useful if all streams sharing the path are rate limited and the total path bandwidth
remains constant.

As an example, if an administrator wants to reserve most of the interface bandwidth for
purpose X, but still allow some use for purpose Y, and if X and Y traffic can be distinguished
by elements of the packet headers, then each flow can be rate limited to a specific fraction of
the total bandwidth.

One method of controlling the rate is to route the traffic through separate output interfaces,
with each interface limited to a certain maximum rate by the hardware. In some cases rate
limiting can also be applied at the next stage router if the router software supports this.

A more flexible approach is to limit the rates in software at the source, using sstandard Linux
commands.

Rate Limiting in Linux

Two standard Linux commands for traffic control and packet filtering are used in the following
examples;

tc – set up queues and place rate limits on data leaving each queue

iptables – define matching criteria for assigning packets to queues

For clarity, examples are given with command options in long form and without using shell
variables. Only the basic rate limiting example has been tested, others may need to be
corrected or modified for your application. The examples assume Linux version 2.4.18 (or
higher).

The following illustration shows the basic queuing structure.

1:0

1:1 1:2

1:121:11 1:13

BA C

tc qdisc

tc class

tc class

iptables

minor IDmajor ID

1:0

1:1 1:2

1:121:11 1:13

BA C

tc qdisc

tc class

tc class

iptables

minor IDmajor ID

Each queuing discipline (qdisc) forms a tree with a common major ID. The top level minor ID
is 0. All other minor IDs are arbitrary as long as they are unique. At the next level there may
be a queue class (1:1 in the illustration) to set a total bandwidth limit for the qdisc. If no other
qdiscs use the same interface, this level is not needed.

The available bandwidth is then divided among one or more queues (1:11, 1:12 and 1:13 in the
illustration). One of these can be a default queue for any traffic that is not assigned to other
queues. At the lowest level are the iptables filters (A,B,C in the illustration) which are used to
assign packets to queues.

Example 1:

Four machines, each with a 1Gbps interface, are sending data to a common destination via a
shared 1Gbps path with a long RTT. We would like to limit the output of each machine to
200Mbps for data packets sent to a specific IP address. Note: if there is other (non rate
limited) traffic on the shared path, then rate limiting the output of these four machines does not
necessarily prevent all packet loss.

Assuming the active interface is eth1 and the destination address is 1.2.3.4, each of the four
machines would invoke a script similar to the following;

tc qdisc add dev eth1 root handle 1:0 htb default 12
tc class add dev eth1 parent 1:0 classid 1:1 htb rate 1000mbit
tc class add dev eth1 parent 1:1 classid 1:11 htb rate 200mbit \
 ceil 200mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:12 htb rate 700mbit \
 ceil 700mbit [mtu 18000]
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --jump CLASSIFY --set-class 1:11

Looking at each line individually,

tc qdisc add dev eth1 root handle 1:0 htb default 12

- create a root queuing discipline ("qdisc") for eth1 and assign it a handle of 1:0
- define it as a hierarchical token bucket queue ("htb")
- specify a default queue class (12) for any traffic not assigned to one of the other classes

tc class add dev eth1 parent 1:0 classid 1:1 htb rate 1000mbit

- create htb queue class (1:1) under the root qdisc (1:0) and limit it to the maximum rate of the
interface (1000Mbps)

tc class add dev eth1 parent 1:1 classid 1:11 htb rate 200mbit \
 ceil 200mbit [mtu 18000]

- create htb queue subclass (under 1:1) with id 1:11 and limit it to a rate of 200Mbps.

tc class add dev eth1 parent 1:1 classid 1:12 htb rate 700mbit \
 ceil 700mbit [mtu 18000]

- create htb queue subclass (under 1:1) with id 1:12 and limit it to a rate of 700Mbps.
 (note: by default, all traffic not assigned to another subclass uses this subclass.)

iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --jump CLASSIFY --set-class 1:11

- match tcp packets with destination address 1.2.3.4 and classify these packets as
belonging to queue 1:11

For simple matches (an IP address or subnet, port number, etc) you can use the "tc filter"
command in place of the iptables command;

tc filter add dev eth1 parent 1:0 protocol ip prio 0 u32 \
 match ip dst 1.2.3.4 flowid 1:11

The only advantage to using "tc filter" is that it will automatically be deleted when you delete
the base tc qdisc. Otherwise, "iptables" provides a much wider range of matching capabilities
and is better documented.

If no other filtering is needed, then Example 1 can be simplified slightly;

tc qdisc add dev eth1 root handle 1:0 htb
tc class add dev eth1 parent 1:0 classid 1:1 htb rate 200mbit \
 ceil 200mbit [mtu 18000]
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --jump CLASSIFY --set-class 1:1

Here the default (for unclassified traffic) is no queuing and no rate limiting, i.e. the packets are
passed directly to the interface. Traffic with destination address 1.2.3.4 is rate limited by
queue 1:1.

Example 2

To reduce problems associated with a high bandwidth-delay path, a 1Gbps transfer from a
single source machine is split into ten streams (each stream assigned to a different port on the
same destination machine). We rate limit each stream to 70Mbps, based on destination IP and
port, with the remaining 300Mbps reserved for other traffic. In practice, the total real
bandwidth will be less than 1000Mbps. The sum of all limits should reflect the real bandwidth.

tc qdisc add dev eth1 root handle 1:0 htb default 99
tc class add dev eth1 parent 1:0 classid 1:1 htb rate 1000mbit
tc class add dev eth1 parent 1:1 classid 1:10 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:11 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:12 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:13 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:14 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:15 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:16 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:17 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:18 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:19 htb rate 70mbit \
 ceil 70mbit [mtu 18000]
tc class add dev eth1 parent 1:1 classid 1:99 htb rate 300mbit \
 ceil 300mbit [mtu 18000]
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1000 \
 --jump CLASSIFY --set-class 1:10
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1001 \
 --jump CLASSIFY --set-class 1:11
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1002 \
 --jump CLASSIFY --set-class 1:12
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1003 \
 --jump CLASSIFY --set-class 1:13
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1004 \
 --jump CLASSIFY --set-class 1:14
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1005 \
 --jump CLASSIFY --set-class 1:15
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1006 \
 --jump CLASSIFY --set-class 1:16
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1007 \
 --jump CLASSIFY --set-class 1:17
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1008 \
 --jump CLASSIFY --set-class 1:18
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 1.2.3.4 --destination-port 1009 \
 --jump CLASSIFY --set-class 1:19

Example 3

A web/FTP server saves at least 60% of the available bandwidth for on-site traffic, but if there
are no on-site clients, then off-site clients can use 100%.

tc qdisc add dev eth1 root handle 1:0 htb
tc class add dev eth1 parent 1:0 classid 1:1 htb rate 600mbit \
 ceil 1000mbit [mtu 18000]
tc class add dev eth1 parent 1:0 classid 1:2 htb rate 400mbit \
 ceil 1000mbit [mtu 18000]
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 131.225.0.0/16 --source-port 80 \
 --jump CLASSIFY --set-class 1:1
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 131.225.0.0/16 --source-port 20:21 \
 --jump CLASSIFY --set-class 1:1
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination 131.225.0.0/16 --source-port 1024:5000 \
 --jump CLASSIFY --set-class 1:1
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination !131.225.0.0/16 --source-port 80 \
 --jump CLASSIFY --set-class 1:2
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination !131.225.0.0/16 --source-port 20:21 \
 --jump CLASSIFY --set-class 1:2
iptables --table mangle --append POSTROUTING --out-interface eth1 \
 --protocol tcp --destination !131.225.0.0/16 --source-port 1024:5000 \
 --jump CLASSIFY --set-class 1:2

In this example, all traffic from ports 20, 21, 80, and 1024-5000 destined for IP subnet 131.225
(on-site) is limited according to queue 1:1. Traffic from the same ports, but destined for any
other IP address (off-site) is limited according to queue 1:2. Traffic from all other ports (on or
off-site) is not limited. Note that the only difference in the on-site/off-site filter definitions is
the "!" before the IP address to invert the range. The rate ceiling for both queues is set to the
interface maximum so that either queue can use the full bandwidth in the absence of traffic in
the other queue.

mtu Parameter

The "mtu" parameter in the tc class definition is needed if the interface uses jumbo packets.
The htb queue assumes a default packet size of 1600 if mtu is not specified. Check the current
interface mtu and qdisc type with

ip link list

Note: the mtu for jumbo packets is typically 9000 Bytes, but if the "mtu" parameter is set to
9000, tests using NDT show a rate approximately 25% higher than the limit requested. With
the mtu parameter set to 18000, the rate reported by NDT is much closer to the requested rate.
We recommend setting mtu to 18000 when using jumbo packets. For standard packets, the
default mtu is satisfactory.

rate and ceil Parameters

The "rate" parameter sets the desired average output rate. The "ceil" parameter sets the
maximum output rate. Setting "ceil" equal to "rate" provides a fixed limit, which then reserves
remaining bandwidth for other traffic. If "ceil" is higher than "rate", the queue is free to use
any bandwidth not being used by other traffic (up to the "ceil" limit).

Note: tc rate parameters use "mbit" to designate "megabits per second" and "mbps" to
designate "megaBytes per second" ...these are easily confused. Also, the documentation states
that a number without a qualifier is in Bytes per second, but it appears that it is actually in bits
per second.

Viewing/Undoing the Damage

The queues and filters defined by tc and iptables remain in effect until deleted. Since they are
applied at the root level, they should be removed when no longer needed. This section tells
you how to undo all traffic classification and rate control.

To view the current iptables rules,

iptables --table mangle --list POSTROUTING --verbose

To delete the iptables rules,

iptables --table mangle --delete POSTROUTING 1 (remove first [or nth] rule in list)

iptables --table mangle --flush POSTROUTING (remove all rules in list)

To view the current tc qdisc and classes,

tc qdisc show dev eth1

tc class show dev eth1

(if no queue is implemented, the default qdisc will be "pfifo_fast")

To delete the tc root queue and all subclasses,

tc qdisc del dev eth1 root

iptables Filtering

This section is a very abbreviated version of the iptables man page (March 9,2002). Refer to
the complete man page for options not shown here.

--

SYNOPSIS

iptables --table mangle --append POSTROUTING [filter_parameters] \
 --jump CLASSIFY --set-class tc_class_id

FILTER_PARAMETERS

The following parameters make up a rule specification.

-p, --protocol [!] protocol

The protocol of the rule or of the packet to check. The specified protocol can be one of
tcp, udp, icmp, or all, or it can be a numeric value, representing one of these protocols
or a different one. A protocol name from /etc/protocols is also allowed. A "!" argument
before the protocol inverts the test. The number zero is equivalent to all. Protocol all
will match with all protocols and is taken as default when this option is omitted.

-s, --source [!] address[/mask]
Source specification. Address can be either a network name, a hostname (please note
that specifying any name to be resolved with a remote query such as DNS is a really
bad idea), a network IP address (with /mask), or a plain IP address. The mask can be
either a network mask or a plain number, specifying the number of 1's at the left side of
the network mask. Thus, a mask of 24 is equivalent to 255.255.255.0. A "!" argument
before the address specification inverts the sense of the address. The flag --src is an
alias for this option.

-d, --destination [!] address[/mask]
Destination specification. See the description of the -s (source) flag for a detailed
description of the syntax. The flag --dst is an alias for this option.

-o, --out-interface [!] name
Name of an interface via which a packet is going to be sent. When the "!" argument is
used before the interface name, the sense is inverted. If the interface name ends in a
"+", then any interface which begins with this name will match. If this option is
omitted, any interface name will match.

[!] -f, --fragment
This means that the rule only refers to second and further fragments of fragmented
packets. Since there is no way to tell the source or destination ports of such a packet (or
ICMP type), such a packet will not match any rules which specify them. When the "!"

argument precedes the "-f" flag, the rule will only match head fragments, or
unfragmented packets.

MATCH EXTENSIONS

iptables can use extended packet matching modules. These are loaded in two ways: implicitly,
when -p or --protocol is specified, or with the -m or --match options, followed by the
matching module name; after these, various extra command line options become available,
depending on the specific module. You can specify multiple extended match modules in one
line, and you can use the -h or --help options after the module has been specified to receive
help specific to that module.
The following are included in the base package, and most of these can be preceded by a ! to
invert the sense of the match.

addrtype

This module matches packets based on their address type. Address types are used within the
kernel networking stack and categorize addresses into various groups. The exact definition of
that group depends on the specific layer three protocol.
The following address types are possible:
UNSPEC an unspecified address (i.e. 0.0.0.0)
UNICAST an unicast address
LOCAL a local address
BROADCAST a broadcast address
ANYCAST an anycast packet
MULTICAST a multicast address
BLACKHOLE a blackhole address
UNREACHABLE an unreachable address
PROHIBIT a prohibited address

--dst-type type

Matches if the destination address is of given type

ah

This module matches the SPIs in AH header of IPSec packets.
--ahspi [!] spi[:spi]

childlevel

This is an experimental module. It matches on whether the packet is part of a master
connection or one of its children (or grandchildren, etc). For instance, most packets are level 0.
FTP data transfer is level 1.
--childlevel [!] level

comment

Allows you to add comments (up to 256 characters) to any rule.
--comment comment
Example:

iptables -A INPUT -s 192.168.0.0/16 -m comment --comment "A privatized IP block"

condition

This matches if a specific /proc filename is '0' or '1'.
--condition [!] filename

Match on boolean value stored in /proc/net/ipt_condition/filename file

connrate

This module matches the current transfer rate in a connection.
--connrate [!] [from]:[to]

Match against the current connection transfer rate being within 'from' and 'to' bytes per
second. When the "!" argument is used before the range, the sense of the match is
inverted.

dscp

This module matches the 6 bit DSCP field within the TOS field in the IP header. DSCP has
superseded TOS within the IETF.
--dscp value

Match against a numeric (decimal or hex) value [0-32].
--dscp-class DiffServ Class

Match the DiffServ class. This value may be any of the BE, EF, AFxx or CSx classes.
It will then be converted into it's according numeric value.

ecn

This allows you to match the ECN bits of the IPv4 and TCP header. ECN is the Explicit
Congestion Notification mechanism as specified in RFC3168
--ecn-tcp-cwr

This matches if the TCP ECN CWR (Congestion Window Reduced) bit is set.
--ecn-tcp-ece

This matches if the TCP ECN ECE (ECN Echo) bit is set.
--ecn-ip-ect num

This matches a particular IPv4 ECT (ECN-Capable Transport). You have to specify a
number between `0' and `3'.

esp

This module matches the SPIs in ESP header of IPSec packets.
--espspi [!] spi[:spi]

icmp

This extension is loaded if `--protocol icmp' is specified. It provides the following option:
--icmp-type [!] typename

This allows specification of the ICMP type, which can be a numeric ICMP type, or one
of the ICMP type names shown by the command
 iptables -p icmp -h

iprange

This matches on a given arbitrary range of IPv4 addresses
[!]--src-range ip-ip

Match source IP in the specified range.
[!]--dst-range ip-ip

Match destination IP in the specified range.

length

This module matches the length of a packet against a specific value or range of values.
--length length[:length]

mport

This module matches a set of source or destination ports. Up to 15 ports can be specified. It can
only be used in conjunction with -p tcp or -p udp.
--source-ports port[,port[,port...]]

Match if the source port is one of the given ports. The flag --sports is a convenient alias
for this option.

--destination-ports port[,port[,port...]]
Match if the destination port is one of the given ports. The flag --dports is a convenient
alias for this option.

--ports port[,port[,port...]]

Match if the both the source and destination ports are equal to each other and to one of
the given ports.

multiport

This module matches a set of source or destination ports. Up to 15 ports can be specified. It can
only be used in conjunction with -p tcp or -p udp.
--source-ports port[,port[,port...]]

Match if the source port is one of the given ports. The flag --sports is a convenient alias
for this option.

--destination-ports port[,port[,port...]]
Match if the destination port is one of the given ports. The flag --dports is a convenient
alias for this option.

--ports port[,port[,port...]]
Match if the both the source and destination ports are equal to each other and to one of
the given ports.

owner

This module attempts to match various characteristics of the packet creator, for locally-
generated packets. Also note that some packets (such as ICMP ping responses) may have no
owner, and hence never match.
--uid-owner userid

Matches if the packet was created by a process with the given effective user id.
--gid-owner groupid

Matches if the packet was created by a process with the given effective group id.
--pid-owner processid

Matches if the packet was created by a process with the given process id.
--sid-owner sessionid

Matches if the packet was created by a process in the given session group.
--cmd-owner name

Matches if the packet was created by a process with the given command name. (this
option is present only if iptables was compiled under a kernel supporting this feature)

NOTE: pid, sid and command matching are broken on SMP

pkttype

This module matches the link-layer packet type.
--pkt-type [unicast|broadcast|multicast]

policy

This modules matches the policy used by IPsec for handling a packet.

--dir out
out is valid in the POSTROUTING chain.

--pol none|ipsec
Matches if the packet is subject to IPsec processing.

--strict
Selects whether to match the exact policy or match if any rule of the policy matches the
given policy.

--reqid id
Matches the reqid of the policy rule. The reqid can be specified with setkey using
unique:id as level.

--spi spi
Matches the SPI of the SA.

--proto ah|esp|ipcomp
Matches the encapsulation protocol.

--mode tunnel|transport
Matches the encapsulation mode.

--tunnel-src addr[/mask]
Matches the source address of a tunnel. Only valid with --mode tunnel.

--tunnel-dst addr[/mask]
Matches the destination address of a tunnel. Only valid with --mode tunnel.

--next
Start the next element in the policy specification. Can only be used with --strict

set

This modules matches IP sets which can be defined by ipset.
--set setname flag[,flag...]

where flags are src and/or dst and there can be no more than six of them.

state

This module, when combined with connection tracking, allows access to the connection
tracking state for this packet.
--state state

Where state is a comma separated list of the connection states to match. Possible states
are INVALID meaning that the packet could not be identified for some reason which
includes running out of memory and ICMP errors which don't correspond to any known
connection, ESTABLISHED meaning that the packet is associated with a connection
which has seen packets in both directions, NEW meaning that the packet has started a
new connection, or otherwise associated with a connection which has not seen packets
in both directions, and RELATED meaning that the packet is starting a new
connection, but is associated with an existing connection, such as an FTP data transfer,
or an ICMP error.

tcp

These extensions are loaded if `--protocol tcp' is specified. It provides the following options:
--source-port [!] port[:port]

Source port or port range specification. This can either be a service name or a port
number. An inclusive range can also be specified, using the format port:port. If the first
port is omitted, "0" is assumed; if the last is omitted, "65535" is assumed. If the second
port greater then the first they will be swapped. The flag --sport is a convenient alias
for this option.

--destination-port [!] port[:port]
Destination port or port range specification. The flag --dport is a convenient alias for
this option.

--tcp-flags [!] mask comp
Match when the TCP flags are as specified. The first argument is the flags which we
should examine, written as a comma-separated list, and the second argument is a
comma-separated list of flags which must be set. Flags are: SYN ACK FIN RST URG
PSH ALL NONE.

[!] --syn
Only match TCP packets with the SYN bit set and the ACK and RST bits cleared. Such
packets are used to request TCP connection initiation; for example, blocking such
packets coming in an interface will prevent incoming TCP connections, but outgoing
TCP connections will be unaffected. It is equivalent to --tcp-flags SYN,RST,ACK
SYN. If the "!" flag precedes the "--syn", the sense of the option is inverted.

--tcp-option [!] number
Match if TCP option set.

--mss value[:value]
Match TCP SYN or SYN/ACK packets with the specified MSS value (or range), which
control the maximum packet size for that connection.

tcpmss

This matches the TCP MSS (maximum segment size) field of the TCP header. You can only
use this on TCP SYN or SYN/ACK packets, since the MSS is only negotiated during the TCP
handshake at connection startup time.
[!] --mss value[:value]

Match a given TCP MSS value or range.

tos

This module matches the 8 bits of Type of Service field in the IP header (ie. including the
precedence bits).
--tos tos

The argument is either a standard name, (use iptables -m tos -h to see the list), or a
numeric value to match.

ttl

This module matches the time to live field in the IP header.
--ttl-eq ttl

Matches the given TTL value.
--ttl-gt ttl

Matches if TTL is greater than the given TTL value.
--ttl-lt ttl

Matches if TTL is less than the given TTL value.

udp

These extensions are loaded if `--protocol udp' is specified. It provides the following options:
--source-port [!] port[:port]

Source port or port range specification. See the description of the --source-port option
of the TCP extension for details.

--destination-port [!] port[:port]
Destination port or port range specification. See the description of the --destination-
port option of the TCP extension for details.

	 Rate Limiting in Linux
	 Example 2
	 Example 3
	A web/FTP server saves at least 60% of the available bandwidth for on-site traffic, but if there are no on-site clients, then off-site clients can use 100%.
	In this example, all traffic from ports 20, 21, 80, and 1024-5000 destined for IP subnet 131.225 (on-site) is limited according to queue 1:1. Traffic from the same ports, but destined for any other IP address (off-site) is limited according to queue 1:2. Traffic from all other ports (on or off-site) is not limited. Note that the only difference in the on-site/off-site filter definitions is the "!" before the IP address to invert the range. The rate ceiling for both queues is set to the interface maximum so that either queue can use the full bandwidth in the absence of traffic in the other queue.
	mtu Parameter
	rate and ceil Parameters
	Viewing/Undoing the Damage
	SYNOPSIS
	FILTER_PARAMETERS

	MATCH EXTENSIONS
	addrtype
	ah
	childlevel
	comment
	condition
	connrate
	dscp
	ecn
	esp
	icmp
	iprange
	length
	mport
	multiport
	owner
	pkttype
	policy
	set
	state
	tcp
	tcpmss
	tos
	ttl
	udp

